### Ten-year record of forest response to elevated CO<sub>2</sub> provides evidence for declining NPP and growth



Richard J. Norby<sup>1</sup>, Colleen M. Iversen<sup>1,2</sup>, Jeffrey M. Warren<sup>1</sup>, Aimée T. Classen<sup>1,2</sup> and Ross McMurtrie<sup>3</sup>

<sup>1</sup>Oak Ridge National Laboratory, Oak Ridge, Tennessee <sup>2</sup>University of Tennessee, Knoxville, Tennessee <sup>3</sup>University of New South Wales, Sydney, Australia

Research sponsored by the U. S. Department of Energy, Office of Science, Biological and Environmental Research Program

### Global models indicate that CO<sub>2</sub> fertilization slows the rate of increase in atmospheric CO<sub>2</sub>...



FACE experiments provide the only longterm data to guide how CO<sub>2</sub> fertilization is represented in models



1068-1078.



#### Oak Ridge Experiment on CO<sub>2</sub> Enrichment of Sweetgum

#### A FACE experiment in a deciduous forest



- *Liquidambar styraciflua* plantation started in 1988
- Closed-canopy stand, linear growth rate
- 2 elevated, 3 control plots (25 m diameter)
- CO<sub>2</sub> exposure (545 ppm) started in 1998

NPP = stem + coarse root increments + leaf litter + fine-root production

N uptake = N content in these components

# We had been reporting that NPP showed a consistent response to elevated CO<sub>2</sub>



# We now see that NPP has been declining in both ambient and elevated CO<sub>2</sub>



- Decline leveling off in 2007?
- Relative response to eCO<sub>2</sub> declining since 2004

## ... and the response of NPP to elevated CO<sub>2</sub> has been declining



### **Can we explain these responses?**

- Why is NPP declining in ambient CO<sub>2</sub>?
- Why is response to eCO<sub>2</sub> declining?
- What do we project for the future?

C<sup>4</sup>MIP models used in IPCC 4<sup>th</sup> assessment report matched (on average) FACE results

Both the models and experiments do not represent long-term N feedback

"Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests"

Free-air CO<sub>2</sub> studies in forests find that a ~50% increase in atmospheric CO<sub>2</sub> concentration sustained over several years enhances NPP by 23%, but the long-term outcome is unclear, especially when interactions with nitrogen availability are considered. (Bonan, Science, 2008)

### Foliar nitrogen concentration has been declining steadily



## The decline in NPP response is probably related to declining N economy



*Implication:* no NPP response to eCO<sub>2</sub> when [N] < 9 mg g<sup>-1</sup>

Can all these results be obtained from a simple model of carbon, water, and nitrogen economy?



### **Optimum leaf [N] shifts with eCO<sub>2</sub>**



McMurtrie et al. Functional Plant Biology 35: 521-534.

## Model can explain NPP based on N uptake to aboveground pools



**Modeled NPP** 

#### Photosynthesis is lower than in 2000 ...



Sholtis et al., New Phytologist, 2004; Warren (unpublished)

#### ... and the

#### response to eCO<sub>2</sub> is much less



Sholtis et al., New Phytologist, 2004; Warren, (unpublished)

### Can soil moisture explain the results?

- Effects of drought in 2002 and 2007 were observed
- Relationships between NPP and growing season soil moisture are weak



Possible interactions between soil moisture and N availability?

### Why is N uptake declining?



A different optimization model suggests N availability declined from year 1 to 5 and was lower in eCO<sub>2</sub> Franklin et al, *Global Change Biology*, in press

Here, N availability is a plant-centric term (g N g<sup>-1</sup> root C) How does this relate to a soil-based evaluation of N availability?

No CO<sub>2</sub> effect on N mineralization Temporal trend is unresolved

## Linking fine-root production, N uptake, and NPP

Franklin model predicts increased N demand for fine roots at the expense of wood and leaves as N availability declines

Our data also show increased N uptake to support fine-root production, but without benefit to wood production



We speculated on two potential outcomes of increased fine-root production

#### Hypothesis:

Increased fine-root production will eventually support greater N supply above ground and increased wood production



#### **Alternative Hypothesis:**

Increased cycling of C and N from fine roots to soil might lead to sequestration in the soil and lower N availability to the trees

### **Conclusions and Continuing Questions**

- The NPP response to eCO<sub>2</sub> is declining as site or stand development factors cause NPP to decline
- The trends in NPP and NPP response are probably related to N economy *but this is not Progressive N Limitation*
- The important question now is whether the declining trends in NPP and [N] will continue, or have they reached relatively steady-state levels?
- To make progress in linking experimental data and models, we need better understanding of plant-soil interactions