Decline of net primary production over 10 years at a forest FACE experiment is associated with increasing nitrogen limitation

Ross McMurtrie Univ. NSW, Sydney Rich Norby Oak Ridge National Lab TN, USA

This talk

- The Oak Ridge FACE experiment NPP decline
- Model
- Is NPP decline caused by reduced N uptake?
- Is reduced N uptake caused by high-CO₂?
- What next?

Oak Ridge Free-Air CO₂ Enrichment Experiment

Goals

- How will eastern-USA deciduous forests be affected by CO₂ enrichment of the atmosphere
- What are the feedbacks from the forest to the atmosphere

http://face.ornl.gov

Oak Ridge Free-Air CO₂ Enrichment Experiment

- Liquidambar styraciflua (sweetgum) monoculture planted in 1988
 - deciduous, closed canopy
 - CO₂ exposure (550 ppm) started spring, 1998

Annual net primary productivity

- CO₂ has consistently stimulated NPP
- Average NPP response over 10 years is 21%
- NPP response declined from 2004 to 2007

NPP at Elevated CO₂ / NPP at Ambient CO₂

 NPP response declined from 20% in 2004 to 11% in 2007

Leaf nitrogen concentration

- Leaf [N] is lower at eCO₂
- Leaf [N] has declined by 0.6 mg g⁻¹ per year at both aCO₂ and eCO₂
- LAI does not change at eCO₂

This talk

- The Oak Ridge FACE experiment NPP decline
- Model
- Is NPP decline caused by reduced N uptake?
- Is reduced N uptake caused by high-CO₂?
- What next?

Research question:

Can all these results be obtained from a simple model of carbon (C), water and nitrogen (N) economy?

Ockham's Razor

Do not unnecessarily multiply your hypotheses beyond what you need for a satisfactory explanation

or K.I.S.S

LUE is function of light-saturated photosynthetic rate (A_{max}) (Sands 1996, *Aust. J. Plant Physiol*)

A_{max} depends on [CO₂], leaf N_{area} & stomatal conductance

Absorbed photosynthetically active radiation

APAR is function of leaf-area index

What if water or nitrogen is limiting?

NPP = net primary production g_s = stomatal conductance [N] = leaf N concentration APAR = absorbed phot. active radn LAI = leaf-area index

C - N - water model:

- 1. NPP = LUE(g_s , [N]_{leaf}) * APAR (LAI)
- 2. Annual water balance
- 3. Annual N balance

Depends on N uptake

3 equations in 4 unknowns (g_s , [N]_{leaf}, LAI, NPP)

What does N balance equation look like?

Annual N uptake to above-ground pools (U_{net}):

- C_f, C_w LA
- = Annual C production of leaves, wood $[N]_{f}, [N]_{fL}, [N]_{w} = N$ concentration of live leaves, leaf litter, wood = Leaf-area index

$$U_{net} = (C_{f} * [N]_{fL} + C_{w} * [N]_{w}) / 0.5$$

 $U_{net} \sim constant * LAI * [N]_{f} + constant * NPP * [N]_{w}$

If both water & nitrogen are limiting:

McMurtrie et al. (2008) Functional Plant Biology (in press)

Conclusions so far:

- 1. Model has an optimum for leaf [N], stomatal conductance & LAI
- 2. At high CO₂
 - NPP increases
 - Leaf [N] and stomatal conductance decline
 - LAI changes little

This talk

- The Oak Ridge FACE experiment NPP decline
- Model
- Is NPP decline caused by reduced N uptake?
- Is reduced N uptake caused by high-CO₂?
- What next?

Is NPP decline caused by reduced N uptake?

Maximise NPP = LUE X APAR

NPP =	net primary production
LUE =	light-use efficiency
APAR =	absorbed phot. active radn
LAI =	Leaf-area index
U _{net} =	annual N uptake to above-ground pools
$[N]_{f}, [N]_{w} =$	N concentration of live leaves, wood

U_{net} ~ constant * LAI * [N]_f + constant * NPP * [N]_w

Estimated N uptake (g N m⁻² year⁻¹)

17

Measured (y) versus Simulated (x)

Leaf [N] (mg N g^{-1})

Peak LAI

Conclusions

- 1. Model has an optimum for leaf [N], stomatal conductance & LAI
- 2. Leaf [N] and stomatal conductance decline at high CO₂
- 3. N uptake to above-ground pools (U_{net}) has declined since 2001 at both aCO_2 and eCO_2
- 4. As U_{net} declines
 - leaf [N] and NPP decline
 - LAI changes little
 - NPP response to eCO₂ declines
- 5. Rate of decline of U_{net} is same at aCO_2 and eCO_2 . i.e. No evidence of CO_2 -induced N limitation

What next?

- 1. Oak Ridge FACE: Continue experiment:
 - Why does N uptake decline?
 - What are consequences for growth response to eCO₂?
 - Is there evidence of "progressive N limitation" at eCO₂?

2. Root N uptake:

- Incorporate root N uptake
- Does model predict increased root production & increased N uptake at eCO₂?
- Does the model correctly predict inter-year variation in NPP response & C allocation?
- 3. Biogeochemical cycling (G'DAY model)
 - Incorporate soil feedbacks in N balance equation
 - Does model predict "progressive N limitation" due to soil feedbacks at eCO₂?
- 4. What do plants maximise? NPP, or GPP or ?

The Hawkesbury Forest Experiment, Richmond, NSW

Acknowledgements Department of Climate Change Australian Research Council US Department of Energy

Photo: Craig Barton, NSW DPI