CO₂ enrichment increases carbon and nitrogen input from fine roots in a deciduous forest

Colleen Iversen^{1,2}, Joanne Ledford², and Richard Norby² University of Tennessee¹ and Oak Ridge National Laboratory² Ecological Society of America, 2008

Free-Air CO₂ Enrichment provides a unique opportunity

Has elevated [CO₂] increased net primary production?

Elevated [CO₂] increased sweetgum NPP

Elevated [CO₂] increased sweetgum NPP

Elevated [CO₂] has changed C partitioning over time

Does increased biomass allocation to fine roots lead to greater inputs of carbon and nitrogen to the soil?

Fine-root production and mortality from mini-rhizotron images

Fine root populations are extremely heterogeneous

Power functions nicely describe the variation in root mass and N

Iversen CM, Ledford L, Norby RJ (2008) New Phytologist

Has elevated [CO₂] affected root mass or [N]?

Has elevated [CO₂] affected root proliferation throughout the soil?

Has elevated [CO₂] affected root mass or [N]?

Has elevated [CO₂] affected root proliferation throughout the soil?

Elevated [CO₂] had no effect on diameter-RML relationship

Elevated [CO₂] had no effect on diameter-N relationship

Has elevated [CO₂] affected root mass or [N]?

Has elevated [CO₂] affected root proliferation throughout the soil?

Has elevated [CO₂] affected root proliferation throughout the soil?

Has elevated [CO₂] affected root proliferation throughout the soil?

Elevated [CO₂] has increased fineroot proliferation at depth

Soil N availability changes with soil depth

Less N available for plant uptake near the soil surface

More N may be accessed by deeper roots under elevated [CO₂]

Has elevated [CO₂] affected root proliferation throughout the soil?

Biomass production doubled under elevated CO₂; response at depth to alleviate N limitation.

Biomass production doubled under elevated CO₂; response at depth to alleviate N limitation.

Root turnover stabilized over time as minirhizotron tubes colonized

Root turnover was slightly less under elevated CO₂

Biomass production doubled under elevated CO₂; response at depth to alleviate N limitation.

Biomass production doubled under elevated CO₂; response at depth to alleviate N limitation.

Turnover declined slightly under elevated [CO₂]; roots living longer.

Does increased biomass allocation to fine roots lead to greater inputs of carbon and nitrogen to the soil?

Root biomass input to the soil was greater under elevated [CO₂]

SOM dynamics in ecosystem models

More than half of the inputs were below 30 cm depth

SOM dynamics in ecosystem models

Root biomass and N content estimated from MR data with continuous functions based on root diameter

Though turnover was somewhat slower, C and N input from fine-root mortality doubled under elevated [CO₂]

Important to incorporate rooting depth and N feedbacks into ecosystem models

Our next step will be to link root decomposition with soil C storage

Acknowledgements

Co-authors: Joanne Ledford and Richard Norby

Funding: I was supported by a Graduate Research Environmental Fellowship under the Department of Energy's Global Change Education Program. My dissertation research was supported by the United States Department of Energy, Office of Science, Biological and Environmental Research and grants from the Ecology and Evolutionary Biology department at the University of Tennessee, Knoxville. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the United States Department of Energy under contract DE-AC05-99OR22725.

Thank you to the following people: Aimée Classen, Milton Constantin, Marie-Anne de Graaff, Caroline DeVan, Cayenne Engel, James Fordyce, Jeffrey Gaffney, Louis Gross, Julie Jastrow, Gloria Jiminez, Martin Nuñez, Sarah O'Brien, Tara Sackett, Nathan Sanders, Jennifer Schweitzer, Katherine Sides, Lara Souza, Jeffrey Warren, Jake Weltzin and numerous undergraduate researchers.

For more information, see: Iversen CM, Ledford L, Norby RJ (2008) CO₂ enrichment increases carbon and nitrogen input from fine roots in a deciduous forest. *New Phytologist* **179**: 837–847.