Elevated atmospheric CO₂ concentrations do not alter net nitrogen mineralization rates in a CO₂ enriched sweetgum forest

Aimée T. Classen^{1,2} • Colleen M. Iversen^{1,2} • Caitlin R. Guthrie³ • Richard J. Norby² The University of Tennessee, Knoxville¹ • Oak Ridge National Laboratory² • Pomona College³

Hypothesis

Increased production and N uptake in a sweetgum forest under elevated atmospheric [CO₂] will decrease net N mineralization.

Key Results

There was no difference in net N mineralization rates, net N nitrification rates, or N leaching between elevated and ambient treatments.

Take-home Message

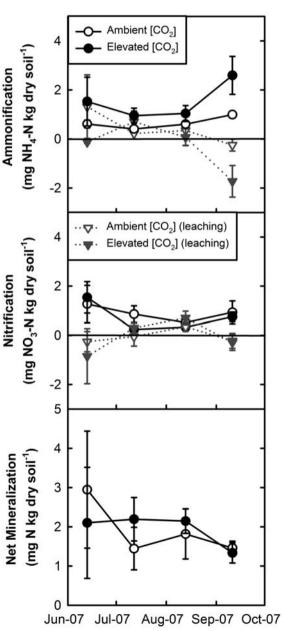
These results indicate that increased forest production and N uptake under elevated $[CO_2]$ have not altered the net amount of N available for forest uptake at ORNL FACE.

The FACE site consists of five 25 mdiameter rings. FACE apparatus was built around four of the five rings - for a total of 2 elevated (544 ppm) & 3 ambient (391 ppm) rings.

Caitlin and Colleen taking soil cores at the ORNL FACE experiment.

Background & Methods

- Previous research has demonstrated that elevated levels of atmospheric [CO₂] increase forest production and N demand in temperate ecosystems. Therefore, soil N availability may constrain the response of forests to elevated [CO₂].
- Understanding how soil N cycling responds to elevated [CO₂] in forests will enable scientists to make better predictions of how forests will respond to future atmospheric change.
- We took advantage of a long-term Free-Air CO₂ Enrichment (FACE) experiment at Oak Ridge National Laboratory (ORNL) to test our hypothesis that net N mineralization would decrease under elevated [CO₂].
- We incubated soil cores during the growing season of 2007 in one-month intervals, and measured the difference in inorganic N concentrations and leaching from the beginning to the end of the incubation.


Results

Net ammonification rates (i.e., the transformation of organic N to NH_4^+) and NH_4^+ leaching levels were not significantly different between the ambient and elevated [CO₂] treatments. However, there was a substantial increase in N leaching in September in both treatments.

Net nitrification rates (i.e., the transformation of NH_4^+ to NO_3^-) and NO_3^- leaching did not differ between the elevated and ambient [CO₂] treatments, nor was there a significant difference over time.

There was no significant effect of elevated [CO₂] on net N mineralization rates (i.e., a combination of ammonification and nitrification plus the N lost to leaching). Net N mineralization rates also did not change over the growing season period.

These results indicate that: (1) increased forest production and N demand under elevated $[CO_2]$ have not altered the net amount of N available for plant uptake in a measurable way, and (2) increased litter input has not altered microbial N demand and therefore the supply to plants.

Research was sponsored by the U.S. Department of Energy, Office of Science, Biological and Environmental Research.