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Abstract
Increases in global CO2 levels have the potential to change ecosystems and 
their functions. Such changes may affect microbial communities either 
directly or indirectly through changes in temperature or plant communities. 
Soil microbial communities that drive processes such as those involved in 
nitrogen and methane cycling are of particular interest to ecosystem 
ecologists. We have begun a broad study of microbial functional gene 
diversity at two Free Air CO2 Enrichment (FACE) sites. Thus far we have 
focused on denitrification (nitrite reductase, nirK) and nitrogen fixation 
(nitrogenase, nifH) genes, completing sequencing of ambient and elevated 
libraries from each site. Diversity of the clone libraries for both genes was 
high, but much higher in nirK than in nifH. Libraries also contained 
numerous gene-types (nirK 35/255; nifH 16/250) significantly different on a 
similarity basis (<85%) than any reported sequences. Interestingly, neither 
gene showed significant changes in composition between libraries
originating from ambient and elevated CO2 levels, as most dominant gene 
types were shared between treatments. This corresponds with recent 
surveys of soil enzyme activities that showed no significant differences 
between treatments. There were however marked differences in nirK genes 
found between the two sites, but this was less apparent in nifH where one 
sequence group related to Bradyrhizobium dominated both at ~20% 
(52/250) of all sequences. Currently, we are sequencing libraries containing 
ammonium and methane monooxygenase (amoA & pmoA) genes involved 
in nitrification and methane consumption. We are also initiating libraries for 
nitrate reductase, nitrous oxide reductase (denitrification), methyl M 
reductase (methanogenesis) and Rubisco (carbon fixation) using existing 
primers. Additionally we are testing new primers for chitinase, cellulase and 
laccase genes to study carbon polymer turnover. These data provide a first 
glimpse of how elevated CO2 levels may affect important microbial 
functional diversity. An additional goal of these studies is development of 
microarrays to be used to conduct finer resolution analyses.

• Survey of enriched 
and control ring soils 
for diversity of genes 
related to C & N 
cycling.

• Collaboration, with 
Duke researchers 
doing rDNAmicrobial 
diversity analyses

• Sample collection and 
archiving for fine 
scale microarray 
analyses.

• Carbon Cycle Genes
−Methane oxidation / reduction

•Methane monooxygenase(pmoA)*
•Methyl M reductase (mmr)

−Polymer Degradation
•Chitinase(chiA)
•Cellulase(cellM)
•Laccase(lcc1)

−Carbon Fixation
•Rubisco(rbcL)

• Nitrogen Cycle Genes
−Denitrification

•Nitrate reductase (narG)

•Nitrite reductase (nirK, nirS) *
•Nitric Oxide reductase (norB)
•Nitrous Oxide reductase (nosZ)

−Nitrifcation
•Ammonium monooxygenase(amoA)*

−Nitrogen Fixation
•Dinitrogenasereductase (nifH) *

* Sequencing in progress
* Sequencing completed

1

2
3

4

1 2

DUKE FOREST SITE
4 (sectors of each ring)
6 (3 experimental and 3 control rings)
2 (seasonal samplings)
TOTAL = 48 samples

ORNL FOREST SITE
2 (sectors of ea. ring)
5 (depth samples from 2 sectors ea. ring)
4 (2 experimental and control rings)
2 (seasonal samplings)
TOTAL = 80 samples
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Changes in microbial denitrification processes have 
the potential to alter ecosystem responses via nitrogen 
availability, and global warming via NO and N2O 
production.  Nitrite reductase enzymes catalyze the first 
denitrification step that can result in loss of N to the 
atmosphere.

Over 255 nirK clones have been sequenced from each 
site.  Approximately 15 clones appear to be highly novel 
types with less than 85% homology to other sequenced 
nirK-types.

On the scale surveyed there is little evidence for 
changes in the overall diversity or distribution of nitrite 
reducing microbial communities between treatments, 
however very significant changes in the composition 
and distribution of nirK-types are observed between 
sites (Duke and ORNL).
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 MIXED Cluster 2 (n=15)
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 MIXED Cluster 3 (n=18)
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 ELEV Cluster 4 (n=5)
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Duke-FACE nifH (dinitrogenase reductase)

Changes in microbial nitrogen fixation 
processes have the potential to alter overall 
ecosystem responses to increased CO2 via 
nitrogen availability to plants.  Dinitrogenase
reductase (nifH) enzymes catalyze the second 
essential step required for both free-living and 
symbiotic N fixation.

Over 250 nifH clones have been sequenced 
from each site. Sequences closely related to 
Bradyrhizobium japonicum (a well studied free-
living N fixer) dominated both sites, contributing 
approx 20% of the genes recovered.

On the scale surveyed there is some evidence 
for changes in the overall diversity of Nitrogen 
fixing microbial communities between treatments 
at the DUKE forest site.  It appears the diversity 
of N-fixing organisms slightly increased with CO2
treatment. 

As with nirK above, significant changes in the 
composition and distribution of nifH-types are 
observed between sites (Duke and ORNL).

Methods
Samples were obtained from the Duke and ORNL Free Air CO2 
Enrichment (FACE) facilities in Spring 2003.  The samples used in this 
study were composited first by ring and then by treatment.  DNA 
samples from each treatment and site was extracted (Zhou et al.,
AEM, 1996).  Clone libraries were constructed and sequenced using 
previously described methods (Liu et al., AEM, 2003).  These 
methods were designed specifically to minimize biases associated
with PCR amplification.  DNA and AA sequences were aligned in 
clustal and adjusted by hand were required.  Phylogenetic analyses 
were performed in Mega 3.0 using the Kimura-Nei or PAM site 
substitution corrections Neighbor-Joining methods.  All analyses were 
bootstrapped 500 times. Average pairwise distance between any two 
taxa was calculated on the partitioned and full data set and used an
approximation of sample diversity.  Survey results are being used in 
microarray design (Poster K-070) and the additional samples outlined 
above will be used in eventual fine scale microarray analyses.

Principal Project Objectives Results for N fixation genes (nifH)

Results for denitrification genes (nirK)

Conclusions and Future Directions

On the scale surveyed there is some evidence for 
changes in the overall diversity of Nitrogen fixing 
microbial communities between treatments at the DUKE 
forest site.  It appears the diversity of N-fixing organisms 
slightly increased with CO2 treatment. 

While these surveys suggest high diversity in these 
microbial functional genes, their utility in accessing the 
overall effects of CO2 enrichment is limited do to issues 
of sample temporal and spatial scale, experimental 
design, etc…

We will continue to survey and analyze clone libraries 
for 8 other microbial genes and processes important in N 
and C cycling in these systems.

Clone sequences are being used in the design of a 
new Functional Gene Microarray that will be used to 
address (poster K070) issues at more experimentally 
relevant scales


